19.7 MA(1)

MA(1)

A stationary univariate stochastic process (Yt) follows a model MA(1) when

Yt=δ+ϕ1Yt1+ϕ2Yt2+ωt where $ _t$ is a white noise with zero mean and variance σ2ω,ωtN(0,σ2ω).

When a stationary process (Yt) follows a MA(1),

Yt=μ+ωtθ1ωt1

with |θ1|<1 y(ωt)IID(0,σ2ω), it can verified that:

  • Mean:

μY=μ

Since:

E[Yt]=μ+E[ωt]0+θ1E[ωt1]0=μ

  • Variance: σ2Y=(1+θ21)σ2ω

given that:

γ0=Var(Yt)=E[(Ytμ)2]=E[(ωt+θ1ωt1)2]=E[ω2t+θ21ω2t1+2θ1ωtωt1]=σ2ω+θ21σ2ω+2θ1E[ωtωt1]0=(1+θ21)σ2ω

  • Autocovariance:

γ1=Cov(Yt,Yt1)=E[(Ytμ)(Yt1μ)]=E[(ωt+θ1ωt1)(ωt1+θ1ωt2)]=E[ωtωt1+θ1ω2t1+θ1ωtωt2+θ21ωt1ωt2]=E[ωtωt1]+θ1E[ω2t1]+θ1E[ωtωt2]+θ21E[ωt1ωt2]=θ1σ2ω

γ2=Cov(Yt,Yt2)=E[(Ytμ)(Yt2μ)]=E[(ωt+θ1ωt1)(ωt2+θ1ωt3)]=E[ωtωt2+θ1ωt1ω2+θ1ωtωt3+θ21ωt1ωt3]=0

In general, for any lag 2,

γj=Cov(Yt,Ytj)=E[(Ytμ)(Ytjμ)]=0j2

From these results we can obtain the autocorrelations.

  • ACF:

ρj={1 si j=0θ1(1+θ21) si j=10j>1

  • PACF:

ϕjj=[1ji=0θ2i1]θj1=[1θ211θ2(j+1)1]θj1j1

Examples:


The MA(1) process has short memory