19.7 MA(1)
A stationary univariate stochastic process (Yt) follows a model MA(1) when
Yt=δ+ϕ1Yt−1+ϕ2Yt−2+ωt where $ _t$ is a white noise with zero mean and variance σ2ω,→ωt∼N(0,σ2ω).
When a stationary process (Yt) follows a MA(1),
Yt=μ+ωt−θ1ωt−1
with |θ1|<1 y(ωt)∼IID(0,σ2ω), it can verified that:
- Mean:
μY=μ
Since:
E[Yt]=μ+E[ωt]⏟0+θ1E[ωt−1]⏟0=μ
- Variance: σ2Y=(1+θ21)σ2ω
given that:
γ0=Var(Yt)=E[(Yt−μ)2]=E[(ωt+θ1ωt−1)2]=E[ω2t+θ21ω2t−1+2θ1ωtωt−1]=σ2ω+θ21σ2ω+2θ1E[ωtωt−1]⏟0=(1+θ21)σ2ω
- Autocovariance:
γ1=Cov(Yt,Yt−1)=E[(Yt−μ)(Yt−1−μ)]=E[(ωt+θ1ωt−1)(ωt−1+θ1ωt−2)]=E[ωtωt−1+θ1ω2t−1+θ1ωtωt−2+θ21ωt−1ωt−2]=E[ωtωt−1]+θ1E[ω2t−1]+θ1E[ωtωt−2]+θ21E[ωt−1ωt−2]=θ1σ2ω
γ2=Cov(Yt,Yt−2)=E[(Yt−μ)(Yt−2−μ)]=E[(ωt+θ1ωt−1)(ωt−2+θ1ωt−3)]=E[ωtωt−2+θ1ωt−1ωℓ−2+θ1ωtωt−3+θ21ωt−1ωt−3]=0
In general, for any lag ≥2,
γj=Cov(Yt,Yt−j)=E[(Yt−μ)(Yt−j−μ)]=0∀j≥2
From these results we can obtain the autocorrelations.
- ACF:
ρj={1 si j=0θ1(1+θ21) si j=10∀j>1
- PACF:
ϕjj=−[1∑ji=0θ2i1]θj1=−[1−θ211−θ2(j+1)1]θj1∀j≥1
Examples:
The MA(1) process has short memory